On associative algebras satisfying the identity x 5 = 0

نویسندگان

  • Ivan Shestakov
  • Natalia Zhukavets
چکیده

We study Kuzmin’s conjecture on the index of nilpotency for the variety N il5 of associative nil-algebras of degree 5. Due to Vaughan-Lee [11] the problem is reduced to that for k-generator N il5-superalgebras, where k ≤ 5. We confirm Kuzmin’s conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Nilpotent Quotients of Associative Algebras and Algebras Satisfying a Polynomial Identity

We describe an effective algorithm to determine the maximal class-c quotient (or the maximal commutative class-c quotient) of a finitely presented associative algebra over an arbitrary field. As application, we investigate the relatively free d-generator algebras satisfying the identity xn = 0. In particular, we consider the identity x = 0 and the cases (d, n) = (2, 4) and (d, n) = (2, 5).

متن کامل

Non-associative algebras associated to Poisson algebras

Poisson algebras are usually defined as structures with two operations, a commutative associative one and an anti-commutative one that satisfies the Jacobi identity. These operations are tied up by a distributive law, the Leibniz rule. We present Poisson algebras as algebras with one operation, which enables us to study them as part of non-associative algebras. We study the algebraic and cohomo...

متن کامل

A Generalization of Noncommutative Jordan Algebras*

and x y denotes the product x ‘3~ = my + y.2’. In Section 1 we show that a noncommutative Jordan algebra of characteristic # 2 must satisfy (1). Since power-associative algebras satisfying (1) need not be flexible [5] it follows that the class of power-associative algebras satisfying (1) is strictly larger than the class of noncommutative Jordan algebras. In Section 2 we obtain a structure theo...

متن کامل

A Non-associative Generalization of Mv-algebras

We consider a non-associative generalization of MV-algebras. The underlying posets of our non-associative MV-algebras are not lattices, but they are related to so-called λ-lattices. c ©2007 Mathematical Institute Slovak Academy of Sciences 1. Non-associative MV-algebras As known, MV-algebras were introduced in the late-fifties by C . C . C h a n g as an algebraic semantics of the Lukasiewicz ma...

متن کامل

On (finite) distributive lattices with antitone involutions

Some well-known algebras of logic or other algebraic models of non-classical reasoning, such as MV-algebras or orthomodular lattices, can be regarded as lattices with antitone involutions, i.e., bounded lattices with the property that all principal filters (or ideals) are equipped with antitone involutions. This simple observation is behind the so-called “basic algebras” that were introduced in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004